

Prüfung 2017

Fachoberschule

Fach: Mathematik

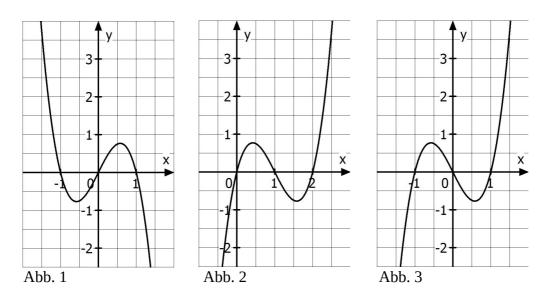
Fachrichtungen: Ernährung und Hauswirtschaft

Gestaltung, Technik Gesundheit und Soziales Wirtschaft und Verwaltung

Hinweise für die Prüfungsteilnehmerinnen und Prüfungsteilnehmer

Bearbeitungszeit: 210 Minuten

Hilfsmittel: von der Fachkonferenz der Schule genehmigte


Formelsammlung:

Taschenrechner (nicht programmierbar, nicht grafikfähig); Zeichengeräte; Wörterbuch zur deutschen Rechtschreibung

Vom Prüfungsteilnehmer sind die Pflichtaufgaben und eine auszuwählende Wahlaufgabe vollständig zu bearbeiten.

Pflichtaufgaben

- Der Graf f einer ganzrationalen achsensymmetrischen Funktion 4. Grades verläuft **25 BE** durch den Punkt P(0 | -4) und hat in $E\left(-1 | -\frac{9}{2}\right)$ einen lokalen Extrempunkt.
- 1.1 Berechnen Sie die Gleichung der Funktion f(x). 4 BE (Kontrollergebnis: $y = f(x) = \frac{1}{2} \cdot \left(x^4 2 \cdot x^2 8\right)$)
- 1.2 Begründen Sie, bei welcher der Abbildungen es sich um den Grafen der ersten Ableitung von f handelt.

- 1.3 Berechnen Sie unter Beschreibung der Lösungsverfahren die Nullstellen von f.
- 4 BE

3 BE

- 1.4 Begründen Sie ohne weitere Rechnung die Anzahl und Lage der Wendestellen.
- 1.5 Skizzieren den Grafen der Funktion f in einem geeigneten Intervall. 2 BE
- 1.6 Der Graf der Funktion f soll in Ordinatenachsenrichtung so verschoben 2 BE werden, dass $x_{01} = -1$ und $x_{02} = 1$ die Nullstellen der neuen Funktion sind. Begründen Sie die neue Funktionsgleichung.
- 1.7 Der Graf der Funktion f und die Abszissenachse schließen eine Fläche A vollständig ein. Berechnen Sie deren Flächeninhalt mit Hilfe des Hauptsatzes der Differential- und Integralrechnung.
- 1.8 Die Gerade g mit der Gleichung y = g(x) = -2x 4 teilt die unter 1.7
 4 BE beschriebene Fläche A in 2 Teilflächen.
 Berechnen Sie deren Teilverhältnis.

- 2 Die Fragestellungen dieser Aufgaben besitzen untereinander keinen Bezug. Sie sind unabhängig voneinander zu bearbeiten.
- 2.1 Gegeben ist die Zahlenfolge: $(a_n) = \left(\frac{2n 3n^2}{4n^2 + 3}\right)$.
 - 2.1.1 Geben Sie den Grenzwert der Zahlenfolge an.

1 BE

- 2.1.2 Verändern Sie den Nenner des Terms, sodass sich eine Nullfolge ergibt. 1 BE
- 2.2 Geben Sie den Definitionsbereich der Funktion $y = f(x) = \frac{\ln(x+4)}{x-4}$ an. 2 BE
- 2.3 Berechnen Sie die Stelle, an der die Tangente an den Grafen von f mit $y = f(x) = \sqrt{x+1}$ parallel zur Geraden y = 2 + x verläuft.
- 2.4 Sam formuliert folgende Aussage: " (x 3)² = (3 x)² "

 Tim sagt: "Diese Aussage kann nicht stimmen, denn das

 Kommutativgesetz gilt nur für die Addition und Multiplikation."

 Begründen Sie, welcher Schüler recht hat.

Wahlaufgaben

Von den folgenden vier Wahlaufgaben ist eine auszuwählen und vollständig zu bearbeiten.

- 3 Funktionen Gegeben ist die Funktion f durch $y = f(x) = e^{-x}(-x^2 + 2 \cdot x + 3)$.
- 3.1 Berechnen Sie die Nullstellen von f.
 Geben Sie das Verhalten im Unendlichen von f an.
- 3.2 Begründen Sie mit Hilfe der Ergebnisse von 3.1 ohne weitere Rechnung 4 BE Art und Lage der lokalen Extremstellen.
- 3.3 Die Gerade g berührt den Grafen von f im Punkt P(- 1 | f(x)). 4 BE Berechnen Sie die Funktionsgleichung g(x) der Geraden g.
- 3.4 Berechnen Sie den maximalen Flächeninhalt des Dreiecks ABC mit $A(0\mid 0)$, $B(t\mid 0)$ und $C(t\mid f(t))$ für $0\leq t\leq 3$.

4 Finanzmathematik 15 BE Ein Startkapital von 10.000 € soll nach 13 Jahren Anlage mit Zinseszins ein Endkapital von 17.721,96 € erzielen. 4.1.1 Berechnen Sie den benötigten Zinssatz p. 1 BE 4.1.2 Begründen Sie ohne Rechnung, ob eine Anlage unter sonst 2 BE gleichen Bedingungen aber mit einfacher Verzinsung schneller zum Erfolg führen würde. 4.2 Auf ein mit 3,5 % verzinstes Rentenkonto sollen n Jahre nachschüssig 5.000 € eingezahlt werden. Danach sollen 5 Jahre lang nur die Zinsen auf das Konto fließen. 4.2.1 Berechnen Sie die Jahre n, damit nach dieser Einzahlungsphase 5 BE 15 Jahre jährlich nachschüssig 7.528,84 € entnommen werden können, bis das Konto erlischt. 4.2.2 Welche Einmalzahlung am Anfang der Laufzeit hätte den 1 BE gleichen Effekt wie unter 4.2.1 erzielt?

4.3 Familie Clahn möchte ein mit 3,9 % verzinstes Annuitätendarlehen nach 25
Jahren abgezahlt haben. Sie kann pro Jahr 8.043,82 € als Annuität einplanen.
4.3.1 Berechnen Sie die Höhe des möglichen Darlehens.
2 BE
4.3.2 Nach 10 Jahren Rückzahlung beschließt Familie Clahn, dass
4 BE

4.3.2 Nach 10 Jahren Ruckzahlung beschließt Familie Clahn, dass sie schon 6 Jahre eher mit der Rückzahlung fertig sein will.

Berechnen Sie, um wie viel Prozent dann die Annuität steigen muss.

5 Analytische Geometrie und Vektorrechnung

15 BE

Gegeben sind die Punkte A(4 | 9 | 0), B(7 | 5 | 5), D(7 | 5 | -5), $P\left(\frac{5}{2} \mid 11 \mid \frac{5}{2}\right)$, Q(1 | 13 | 5) und der Vektor $\vec{a} = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$.

5.1 Die Punkte ABCDEFGH sind die Eckpunkte eines Quaders mit der Höhe 5 LE.

5.1.1 Berechnen Sie die Koordinaten der Punkte C, E, F, G und H. 5 BE

5.1.2 Zeichnen Sie den Quader in ein kartesisches Koordinatensystem. 2 BE

5.2 Weisen Sie nach, dass sich die Geraden g (PQ) und $h(B,\vec{a})$ im Punkt A 3 BE orthogonal schneiden.

5.3 Prüfen Sie rechnerisch den Wahrheitswert folgender Aussage: 5 BE "Es existiert **genau ein** Punkt R auf der Geraden g (PQ),

für den gilt: $\overline{AR} = \overline{AB}$ "

6 Statistik

15 BE

6.1 Geben Sie für jede der folgenden Merkmalsausprägungen die entsprechende Skala an.

5 BE

Begründen Sie daran die Notwendigkeit der verschiedenen Skaleneinteilungen.

Platzierung bei einem Wettkampf Geschlecht Zensuren in der FOS Volumer
--

6.2 Der Biobauer Karl verkauft unter anderem Eier der Gewichtsklasse M [53 g \leq x_i < 63 g]. Bei einer Stichprobe entstand folgende Häufigkeitstabelle:

x _i in g	53	54	55	56	57	58	59	60	61	62
H(x _i)	4	5	5	8	10	k	13	3	6	4

Beim Übertragen der Tabelle war die Anzahl der Eier mit 58 g nicht genau zu erkennen.

6.2.1 Berechnen Sie k für den Fall, dass das arithmetische Mittel 57,6 g beträgt.

3 BE

6.2.2 Bestimmen Sie für diesen Fall den Median.

2 BE

6.3 Kartoffeln sollen in Säcken zu je 200 kg abgefüllt werden. Bei einer Kontrolle von 50 zufällig ausgewählten Säcken ergab sich folgende Tabelle:

Masse in kg	[199,0 – 199,2[L /	F /	<u>-</u>	<u> </u>	L , -	[200,2 - 200,4[
Anzahl Säcke	1	4	4	10	24	5	2

6.3.1 Bestimmen Sie die durchschnittliche Masse je Sack.

1 BE

6.3.2 Berechnen Sie die Standardabweichung der Stichprobe und interpretieren Sie diese.

4 BE